Функции потерь в Python — простая реализация

water_loss_spin_compressed-2

Функции потерь Python являются важной частью моделей машинного обучения. Эти функции показывают, насколько сильно предсказанный моделью результат отличается от фактического.

Существует несколько способов вычислить эту разницу. В этом материале мы рассмотрим некоторые из наиболее распространенных функций потерь.

В этом уроке будут рассмотрены следующие четыре функции потерь.

  • Среднеквадратическая ошибка
  • Среднеквадратическая ошибка
  • Средняя абсолютная ошибка
  • Кросс-энтропийные потери

Из этих четырех функций потерь первые три применяются к модели классификации.

Реализация функций потерь в Python

1. Среднеквадратическая ошибка (MSE)

Среднеквадратичная ошибка (MSE) рассчитывается как среднее значение квадратов разностей между прогнозируемыми и фактически наблюдаемыми значениями. Математически это можно выразить следующим образом:

Реализация MSE на языке Python выглядит следующим образом:

import numpy as np
def mean_squared_error(act, pred):

   diff = pred - act
   differences_squared = diff ** 2
   mean_diff = differences_squared.mean()
   
   return mean_diff

act = np.array([1.1,2,1.7])
pred = np.array([1,1.7,1.5])

print(mean_squared_error(act,pred)) 

Выход :

0.04666666666666667

Вы также можете использовать mean_squared_error из sklearn для расчета MSE. Вот как работает функция:

from sklearn.metrics import mean_squared_error
act = np.array([1.1,2,1.7])
pred = np.array([1,1.7,1.5])
mean_squared_error(act, pred)

Выход :

0.04666666666666667

2. Среднеквадратическая ошибка (RMSE)

Стандартное отклонение (RMSD) или среднеквадратичная ошибка (RMSE) - это часто используемая мера разницы между значением (выборочным или общим), предсказанным моделью или оценщиком, и наблюдаемым значением. и наблюдаемыми значениями, или квадратный корень из разницы между ними по второму моменту выборки, или среднеквадратичное значение этих разниц. Эти отклонения называются остатками при расчете по выборке данных, используемых для оценки, и ошибками (или ошибками предсказания) при расчете вне выборки. RMSD используется как единая мера предсказательной силы, включающая величину ошибки предсказания в разных точках данных. RMSD зависит от масштаба и поэтому сравнивает точность ошибок предсказания различных моделей для данного набора данных, а не между наборами данных.

RMSD всегда неотрицателен, при этом значение нуля (что редко достигается на практике) указывает на идеальное согласие с данными. В целом, низкий RMSD лучше, чем высокий RMSD. Однако эта мера зависит от используемой числовой шкалы, что делает невозможным сравнение между различными типами данных.

RMSD - это квадратный корень из среднего квадрата ошибок. Влияние каждой ошибки на RMSD пропорционально размеру квадрата ошибки, поэтому большие ошибки оказывают непропорционально большое влияние на RMSD. Поэтому RMSD чувствителен к выбросам.

Среднеквадратическая ошибка (RMSE) рассчитывается как квадратный корень из среднеквадратичной ошибки. Математически мы можем представить это следующим образом:

Реализация Python для RMSE выглядит следующим образом:

import numpy as np
def root_mean_squared_error(act, pred):

   diff = pred - act
   differences_squared = diff ** 2
   mean_diff = differences_squared.mean()
   rmse_val = np.sqrt(mean_diff)
   return rmse_val

act = np.array([1.1,2,1.7])
pred = np.array([1,1.7,1.5])

print(root_mean_squared_error(act,pred))

Выход :

0.21602468994692867

Вы также можете использовать mean_squared_error из sklearn для расчета RMSE. Давайте посмотрим, как реализовать RMSE, используя ту же функцию:

from sklearn.metrics import mean_squared_error
act = np.array([1.1,2,1.7])
pred = np.array([1,1.7,1.5])
mean_squared_error(act, pred, squared = False) #Если установлено значение False, функция возвращает значение RMSE.

Выход :

0.21602468994692867

Если для параметра squared установлено значение True, функция возвращает значение MSE. Если установлено значение False, функция возвращает значение RMSE.

3. Средняя абсолютная ошибка (MAE)

Средняя абсолютная ошибка (MAE) рассчитывается как среднее значение абсолютной разницы между прогнозами и фактическими наблюдениями. Математически мы можем представить это следующим образом:

Реализация Python для MAE выглядит следующим образом:

import numpy as np
def mean_absolute_error(act, pred):
    diff = pred - act
    abs_diff = np.absolute(diff)
    mean_diff = abs_diff.mean()
    return mean_diff

act = np.array([1.1,2,1.7])
pred = np.array([1,1.7,1.5])
mean_absolute_error(act,pred)

Выход :

0.20000000000000004

Вы также можете использовать mean_absolute_error из sklearn для расчета MAE.

from sklearn.metrics import mean_absolute_error
act = np.array([1.1,2,1.7])
pred = np.array([1,1.7,1.5])
mean_absolute_error(act, pred)

Выход :

0.20000000000000004

4. Функция кросс-энтропийной потери в Python

Перекрестная энтропийная потеря также известна как отрицательная логарифмическая вероятность. Это чаще всего используется для задач классификации. Проблема классификации — это проблема, в которой вы классифицируете пример как принадлежащий к одному из более чем двух классов.

Давайте посмотрим, как вычислить ошибку в случае проблемы бинарной классификации.

Давайте рассмотрим проблему классификации, когда модель пытается провести классификацию между собакой и кошкой.

Код Python для поиска ошибки приведен ниже.

from sklearn.metrics import log_loss
log_loss(["Dog", "Cat", "Cat", "Dog"],[[.1, .9], [.9, .1], [.8, .2], [.35, .65]])

Выход :

0.21616187468057912

Мы используем метод log_loss из sklearn.

Первый аргумент в вызове функции — это список правильных меток классов для каждого входа. Второй аргумент — это список вероятностей, предсказанных моделью.

Вероятности представлены в следующем формате:

[P(dog), P(cat)]

Заключение

Это руководство было посвящено функциям потерь в Python. Мы рассмотрели различные функции потерь как для задач регрессии, так и для задач классификации. Надеюсь, вам было весело учиться вместе с нами!

Written on May 18, 2023
  • Возврат на главную страницу